Penyelidikan Eksperimental Alat Pengisi Daya Menggunakan Termoelektrik Dengan Pemanfaatan Panas Knalpot Sepeda Motor

Rizki Wiranata, Muhammad Idris

Abstract


Thermoelectricity is a material that can convert heat energy into electrical energy. By installing a thermoelectric near the exhaust pipe, the heat emitted from the exhaust pipe will automatically be converted into electrical energy. This article discusses the testing of a power charging device that utilizes the heat from the vehicle's exhaust pipe, according to specific requirements. The process begins with the selection of materials and dimensions, followed by design, fabrication, assembly, and performance testing of the power charging device for mobile phones using the heat from the vehicle's exhaust pipe. The objective of this research is to create a device for charging mobile phones or power banks while analyzing the heat generated by the temperature changes. The methodology employed in this study includes experimental setup, device assembly, device testing, and device analysis. The results of the fabrication of the mobile phone charging device using rectangular copper specimens with dimensions of 80 mm in length, 40 mm in width, and 40 mm in height, along with four square-shaped Peltier modules measuring 40 mm x 40 mm x 4 mm each, indicate a voltage output of approximately ±1.5V per Peltier module. The analysis of the heat generated by the temperature changes during testing at 5000 rpm in an idle state resulted in a temperature difference (∆T) of 208.2 K. The voltage produced was 6.06 V, the current was 0.223 A, and the power was 1.35 watts. Testing the engine at 5000 rpm resulted in an electric current of 0.25 A and power output of 1.55 watts. The overall heat transfer rate was U = 23.915 W/℃, and the thermal resistance rate was ΣR = 20.433 oC/W.

Keywords


Thermoelectric Generator; Seebeck Effect; Energy Conversion

Full Text:

PDF

References


Alamsyah, D., Zulfikar, A. J., Yusuf, M., & Siahaan, R. (2022). Optimasi kekuatan tekan beton kolom silinder diperkuat selubung komposit laminat jute dengan metode anova compressive strength optimization of cylindrical column concrete reinforced jute laminated composite wrap with anova method. Jcebt, 6(1), 30–36. http://ojs.uma.ac.id/index.php/jcebt

Burhanudin. (2021). Design of HHO Generator to Reduce Exhaust Gas Emissions and Fuel Consumption of Non-Injection Gasoline Engine.

Derlini, D., & Zulfikar, A. J. (2022). Penyelidikan Kegagalan pada Alat Pemisah Karet Alam Jenis LRH 410. IRA Jurnal Teknik Mesin Dan Aplikasinya (IRAJTMA), 1(3), 51–61.

Hakim, O. N. (2021). EFEKTIVITAS PENANGANAN EMISI GAS BUANG PADA KENDARAAN DI JAKARTA (DITINJAU DARI PERATURAN GUBERNUR DKI JAKARTA NOMOR 66 TAHUN 2020 TENTANG UJI EMISI GAS BUANG KENDARAAN BERMOTOR). Jurnal Hukum Adigama, 4(1), 1354–1374.

Harman, H., & Ahyar, A. (2019). Design of HHO Generator to Reduce Exhaust Gas Emissions and Fuel Consumption of Non-Injection Gasoline Engine. JURNAL DINAMIKA VOKASIONAL TEKNIK MESIN, 4(1), 9–17.

Hidayat, N., Zulfikar, A. J., & Iswandi, I. (2022). Analisis Metode Split Tensile Test Komposit Laminat Jute Terhadap Kekuatan Tarik Belah Beton Kolom Silinder. IRA Jurnal Teknik Mesin Dan Aplikasinya (IRAJTMA), 1(2), 18–26.

Khalid, M., Syukri, M., & Gapy, M. (2016). Pemanfaatan Energi Panas Sebagai Pembangkit Listrik Alternatif Berskala Kecil Dengan Menggunakan Termoelektrik. Kitektro, 1(3), 57–62.

Luo, D., Wang, R., Yan, Y., Yu, W., & Zhou, W. (2021). Transient numerical modelling of a thermoelectric generator system used for automotive exhaust waste heat recovery. Applied Energy, 297(3), 117151.

Nugroho, W. A., & Haryadi, M. S. (2015). EXHAUST SYSTEM GENERATOR: KNALPOT PENGHASIL LISTRIK DENGAN PRINSIP TERMOELEKTRIK. Sainteknol : Jurnal Sains Dan Teknologi, 13(2), 161–168.

PRADANA, M. A., & WIDYARTONO, M. (2019). Prototipe Pembangkit LIstrik Termoelektrik Generator Menggunakan Penghantar Panas Aluminium, Kuningan Daan seng. JURNAL TEKNIK ELEKTRO, 9(2), 251–258.

Pratomo, A. (2020). Analisis Kinerja Alat Pengisi Daya Handphone Dari Pemanfaatan Panas Knalpot Kendaraan Bermotor.

Quan, R., Liang, W., Quan, S., & Huang, Z. (2022). Performance interaction assessment of automobile exhaust thermoelectric generator and engine under different operating conditions. Applied Thermal Engineering, 216(5), 19055.

Sasmita, A., Yohanes, & Yolanda, K. (2022). Analisis Emisi Gas Buang dari Mesin Diesel Modifikasi Dipengaruhi Daya Mesin dan Bahan Bakar Campuran Oli Bekas dan Dexlite. Semesta Teknika, 25(2), 170–178.

Sasmita, S. A., Ramadhan, M. T., Kamal, M. I., & Dewanto, Y. (2019). Alternatif Pembangkit Energi Listrik Menggunakan Prinsip Termoelektrik Generator. TESLA: Jurnal Teknik Elektro, 21(1), 57–61.

Utami, I., Yoesgiantoro, D., & Sasongko, N. A. (2022). IMPLEMENTASI KEBIJAKAN KENDARAAN LISTRIK INDONESIA UNTUK MENDUKUNG KETAHANAN ENERGI NASIONAL. Jurnal Ketahanan Energi, 8(1), 49–65.

Yuhazri, M. Y., Zulfikar, A. J., & Ginting, A. (2020). Fiber Reinforced Polymer Composite as a Strengthening of Concrete Structures: A Review. IOP Conference Series: Materials Science and Engineering, 1003(1). https://doi.org/10.1088/1757-899X/1003/1/012135

Zhao, Y., Lu, M., Li, Y., Ge, M., & Xie, L. (2021). Characteristics analysis of an exhaust thermoelectric generator system with heat transfer fluid circulation. Applied Energy, 304(5), 117896.

Zulfikar, A. J. (2020). The Flexural Strength of Artificial Laminate Composite Boards made from Banana Stems. Budapest International Research in Exact Sciences (BirEx) Journal, 2(3), 334–340.

Zulfikar, A. J., Ritonga, D. A. A., Pranoto, S., Nasution, F. A. K., Arif, Z., & Junaidi, J. (2023). Analisis Kekuatan Mekanik Komposit Polimer Diperkuat Serbuk Kulit Kerang. Jurnal Rekayasa Material, Manufaktur Dan Energi, 6(1), 30–40.




DOI: https://doi.org/10.31289/jitmi.v2i1.1950

Refbacks

  • There are currently no refbacks.