The Effect of Ease and Trust Using E-commerce on Purchasing Decision for Online Binjai District Attorney Employees

Sinta Marito Elisabet¹, Wan Rizca Amelia² & Teddi Pribadi³
Management Studies Program, Faculty of Economics and Business, Universitas Medan Area, Indonesia

Abstract
This study aims to determine how the influence of ease and trust in using e-commerce on purchasing decisions for online employees of the Binjai District Attorney's Office. The type of research used is quantitative research, where the variables are measured using the Likert scale method. Data collection in this study was carried out by means of a list of questions (questionnaires), interviews (interviews), and direct observation. Sampling was done by total method sampling, where the entire population was used as a sample of 45 people. Data carried out using the SPSS (processing was a statistical program for social science application) version 21.0. The hypothesis testing technique in this study uses multiple linear regression. Previously, the validity test, reliability test, and classical assumption test were conducted first. The results of this study indicate that: (1) Partially, the variable ease of using e-commerce has an effect on purchasing decisions for online employees of the Binjai District Attorney's Office. (2) Partially, the trust variable using e-commerce has an effect on purchasing decisions for online employees of the Binjai District Attorney's Office. (3) Simultaneously there is a positive and significant influence between the variables of convenience and trust in using e-commerce on purchasing decisions for online Binjai State Attorney's employees.

Keywords: Ease; Trust; Purchase Decision

*E-mail: sintamaritoelisabet@gmail.com ISSN 2774-3004 (Online)
INTRODUCTION

E-commerce (electronic commerce) is a business transaction in the form of buying, selling and marketing of goods and services with electronic systems (Jony Wong, 2010). Currently, media is e-commerce very loved by many parties in making purchases online. Users E-commerce are basically people who do not have the time or access to make purchases at stores offline. The existence of e-commerce can facilitate the process of buying an item, so that it can lead to purchasing decisions. The ease and trustworthiness of using e-commerce has a strong relationship to the occurrence of and purchase decision online (Isnaini, Nurhaida and Pratama, 2020; Marbun, Effendi, Lubis and Pratama, 2020).

Difficulty operating features in a media or e-commerce application can change consumer behavior. When making a payment there is a feature payment and not all e-commerce provides a COD payment system (cash on delivery). Whereas the COD (cash on delivery) system is intended to build trust for consumers that the product arrives in the hands of the consumer in accordance with the product requested and to break the chain of payment transaction fraud (Nu'man et al., 2020; Nugroho et al., 2020; Pratama et al., 2020; Utami et al., 2019; Saragih et al., 2020). When users find it easy to apply, it is undeniable that trust in the features offered by e-commerce is also the reason users make purchasing decisions (Amar et al., 2020; Hakimah et al., 2020; Lubis et., 2019; Pratama et al., 2019, Utami et al., 2019).

The number of media or e-commerce applications that carry out a strategy voucher free shipping to attract consumers to make purchases on the media or e-commerce applications (Danilwan et al., 2020; Maggasingang et al., 2020; Pratama et al., 2019; Saragih et al., 2020; Sujianto et al., 2020). However, in reality, to use the voucher, there are characteristics with a maximum shipping cost borne, if the nominal exceeds the postage subsidy they provide, the consumer must pay the remaining unsubsidized shipping costs. has been fulfilled. This often makes consumers feel disappointed and do not believe in the existence of vouchers free shipping, because apparently the vouchers do not fully cover all shipping costs. What is expected by consumers is that if they use the characteristics of using vouchers, it would be better to change the free shipping statement as if the shipping costs will not be borne by consumers.

These results are in line with research Usvita, (2017); Ardyanto et al. (2015); Aangkat & Prihatini, (2018); Hidayat et al. (2017); Heni et al. (2020), which states that the ease and trustworthiness of using e-commerce has an effect on positive and significant impact on purchasing decisions online.

<table>
<thead>
<tr>
<th>Table 1. Characteristics of Respondents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristics of Respondents by Gender</td>
</tr>
<tr>
<td>Woman</td>
</tr>
<tr>
<td>Man</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Characteristics of Respondents by Age Range</td>
</tr>
<tr>
<td>20 to 25 Year</td>
</tr>
<tr>
<td>26 to 30 Year</td>
</tr>
<tr>
<td>31 to 35 Year</td>
</tr>
<tr>
<td>36 to 40 Year</td>
</tr>
<tr>
<td>41 to 45 Year</td>
</tr>
<tr>
<td>46 to 50 Year</td>
</tr>
<tr>
<td>> 51 Year</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Characteristics of Respondents According to Applications Used</td>
</tr>
<tr>
<td>Website</td>
</tr>
<tr>
<td>Instagram</td>
</tr>
</tbody>
</table>
In the table above it can be seen that the number of male respondents was 26 (twenty-six) and female respondents were 19 (nineteen) with a total of 45 person. Respondents who used the most were in the age range of 36 to 40 years, namely 17 (seventeen) people and the least respondents were in the age range of 20 to 25 years and 46 to 50 years, namely the same as 2 persons (Atrizka et al., 2020; Danilwan et al., 2020; Danilwan et al., 2020; Saragih et al., 2020; Silitonga et al., 2020). The e-commerce most widely used application is Shopee, which has 18 (eighteen) users, while the applications that have no users are Tokopedia and Blibli (Candrasa et al., 2020; Kumar et al., 2020; Lubis et al., 2020; Sibuea et al., 2020).

Research Method

This research is a type of research with a quantitative approach. Quantitative research is research in the form of numbers and analysis using statistics. The way to explain data from research can use statistics by determining class intervals or certain categories (Sugiyono, 2012; Tambunan et al., 2018; Tarigan et al., 2021; Tarigan 2020).

In this study, quantitative methods were used to determine the influence of ease and trustworthiness using e-commerce on purchasing decisions for online employees of the Binjai District Attorney's Office (Izar et al., 2020; Tarigan 2018; Tarigan 2017; Tarigan 2016). This research is located at the Bintai District Attorney's office, namely Jalan Teungku Aimir Hamza No. 378, Jati Makmur, North Binjai District, Binjai City, North Sumatra 20351. In this study, the entire population was used as a sample.

A. Data Analysis Techniques

1. **Validity Test and Reliability Test**

a. **Validity Test**

 Test is a tool used to measure the validity of an instrument questionnaire, a valid instrument has high validity, whereas an instrument that is less valid has low validity (Ghozali, 2016). If the correlation factor is positive and the magnitude is 0.30 and above, then the instrument used can be said to be valid (Sugiyono, 2013). The criteria for the validity test in this study are as follows:

 1. If \(r_{count} > r_{table} \): then the variable is said to be valid.
 2. If \(r_{count} < r_{table} \): then the variable is said to be invalid.

 b. **Reliability Test**

 Aims to determine the extent to which the measurement results remain consistent, if two or more measurements are made of the same symptoms using the same measuring instrument (Siregar, 2017). The criteria for the reliability test in this study with Cronbach's Alpha value are as follows:

 1. If Cronbach's Alpha value > 0.60 : then it is declared reliable
 2. If Cronbach's Alpha value is < 0.60 : then it is declared unreliable.

2. **Classical Assumption Test**

 a. **Normality Test**

 In this test it can be said to be normal if the data distribution is form a perfect bell (bell shaped), not leaning to the left or not skewed to the right and vice versa if the graph...
does not form perfect (bell shaped), leaning more to the left or to the right then it can be said that the data is not normal.

2. Normality Test With P-P Plot
 If the data spreads around the diagonal line and follows the direction of the line the diagonal or histogram graph shows a normal distribution pattern, then the regression model fulfills the assumption of normality.

3. Normality Test With Kolmogorov Smirnov
 Test the normality of the Kolmogorov Smirnov method if the results are significant figures (Sig) < 0.05 then the data is not normally distributed.

b. Multicollinearity Test
 Testing aims to determine whether the regression model found a correlation between independent variables (Ghozali, 2016). The criteria for the multicollinearity test in this study are as follows:
 1. If VIF < 10 and Tolerance > 0.1: then there is no multicollinearity.
 2. If VIF > 10 and Tolerance < 0.1: then multicollinearity occurs.

c. Heteroscedasticity Test
 Test aims to test whether in a model regression occurs inequalities of variance from one observation to another observation (Ghozali, 2011). The criteria for the heteroscedasticity test in this study are as follows:
 1. If there is a certain pattern, such as dots that form a regular pattern (wavy, widen then narrowed), then it indicates that heteroscedasticity has occurred
 2. If there is a clear pattern, and the points are spread out above and that the number is 0 on the Y axis, then there is no heteroscedasticity.

3. Multiple Linear Regression
 Linear regression analysis is a quantitative analysis used to test the aforementioned hypothesis. The use of this analytical model aims to determine the relationship between independent variables and dependent variables, either jointly or partially (Kuncororo, 2013). The multiple linear regression formula is as follows:
 \[Y = a + b_1X_1 + b_2X_2 + e \]

 Description:
 - \(Y \) : Dependent variable (Purchase Decision)
 - \(X_1 \) : Independent Variable (Ease)
 - \(X_2 \) : Independent Variable (Trust)
 - \(a \) : Constant
 - \(b_1, b_2 \) : Regression Coefficient for each independent variable
 - \(e \) : Error Factor

 Multiple regression analysis is a regression or prediction model that involves more than one independent variable. The term multiple regression can also be referred to as multiple regression. The word multiple means plural or more than one variable.

4. T test (partially)
 The t test is used to determine whether in the regression model the independent variables \((X_1, X_2, \ldots, X_n)\) partially affect the \(Y \) variable (Priyatno, 2010). The significance level used in this study is 0.05 (\(\alpha = 5\% \)). The formula for determining t table is as follows:
 \[df = n - k - 1 \]

 Description:
 - \(n \) = number of samples
 - \(k \) = number of variables X.

 The criteria for testing (partially) on penellitian are as follows:
 1. If the value of sig. < 0.05 and the \(t_{\text{count}} \) value > the \(t_{\text{table}} \), it means that the independent variable \(X \) partially affects the dependent variable \(Y \)
 2. If the value of sig. > 0.05 and the value of \(t_{\text{arithmetic}} < \) value of \(t_{\text{table}} \), it means that the
independent variable (X) partially has no effect on the dependent variable (Y)

5. F test (simultaneously)
 The F test is used to determine whether the independent variable (X1, X2, ... Xn) together have a significant effect on the Y variable (Priyatno, 2010). If the significance value is 0.05 then there is a simultaneous significant effect between the independent variables on the dependent variable. The significance level used in this study is 0.05 (α = 5%). The formula for determining the \(f_{\text{table}} \):

 \[
 \text{df 1} = k - 1, \text{ and df 2} = n - k
 \]

 Information:
 n = number of respondents
 k = number of research variables

 The criteria for the F test (simultaneously) in this study are as follows:
 1. If, \(f_{\text{count}} > f_{\text{table}} \) and significance value < 0.05 then Ha is accepted and Ho is rejected.
 2. If, \(f_{\text{count}} < f_{\text{table}} \) and significance value > 0.05 then Ha is rejected and Ho is accepted.

6. Determinant Test (\(R^2 \))
 The determinant test is used to determine the percentage of the contribution of the influence of the independent variables (X1, X2,... Xn) simultaneously on the Y variable (Priyatno, 2010). The larger the value of \(R^2 \) (approaching 100%), the greater the influence of independent variables in the regression model used affect the dependent variable.

RESULTS AND DISCUSSION
1. Validity Test and Reliability Test
 a. Validity Test
 In the validity test, it can be seen through the value \(r_{\text{count}} > r_{\text{table}} \).

 Table 2.
 Result of Validity Test

<table>
<thead>
<tr>
<th>Variable</th>
<th>Statement</th>
<th>(r_{\text{count}})</th>
<th>(r_{\text{table}})</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ease</td>
<td>X1.1</td>
<td>0.732</td>
<td>0.3</td>
<td>Valid</td>
</tr>
<tr>
<td></td>
<td>X1.2</td>
<td>0.755</td>
<td>0.3</td>
<td>Valid</td>
</tr>
<tr>
<td></td>
<td>X1.3</td>
<td>0.763</td>
<td>0.3</td>
<td>Valid</td>
</tr>
<tr>
<td>Trust</td>
<td>X2.1</td>
<td>0.674</td>
<td>0.3</td>
<td>Valid</td>
</tr>
<tr>
<td></td>
<td>X2.2</td>
<td>0.674</td>
<td>0.3</td>
<td>Valid</td>
</tr>
<tr>
<td></td>
<td>X2.3</td>
<td>0.770</td>
<td>0.3</td>
<td>Valid</td>
</tr>
<tr>
<td></td>
<td>X2.4</td>
<td>0.627</td>
<td>0.3</td>
<td>Valid</td>
</tr>
<tr>
<td>Purchase</td>
<td>Y1</td>
<td>0.581</td>
<td>0.3</td>
<td>Valid</td>
</tr>
<tr>
<td>Decision</td>
<td>Y2</td>
<td>0.773</td>
<td>0.3</td>
<td>Valid</td>
</tr>
<tr>
<td></td>
<td>Y3</td>
<td>0.719</td>
<td>0.3</td>
<td>Valid</td>
</tr>
<tr>
<td></td>
<td>Y4</td>
<td>0.717</td>
<td>0.3</td>
<td>Valid</td>
</tr>
</tbody>
</table>

Source: Results of Data Processing With SPSS (2021)

Based on the table above, the results of the instrument validity test of the three variables, namely convenience, trustworthiness, and purchasing decisions show that all items of variable statements are declared valid, because the value of \(r_{\text{count}} > r_{\text{table}} \).

b. Reliability Test
 Test can be seen through the value \(Cronbach \ Alpha > 0.6. \)

 Table 3.
 Reliability Test Results

<table>
<thead>
<tr>
<th>Variable</th>
<th>(Cronbach \ Alpha)</th>
<th>AlphaValue</th>
<th>Description</th>
</tr>
</thead>
</table>

110
2. Classical Assumption Test
 a. Normality Test Normality
 1. Test With Histogram

 ![Figure 1. Normality Test With Histogram](Image)

 Figure 1. Normality Test With Histogram

 In the picture above can show that the data has been distributed normally. This is because the histogram curve has a balance to the left and right and has formed like a perfect bell.

 2. Normality Test With P-P Plot

 ![Figure 2. Normality Test With P-P Plot](Image)

 Figure 2. Normality Test With P-P Plot

 Picture above shows that the normal line probability plot where the variables are normally distributed. This is because the points of spread of data spread close to the diagonal line.

 Source: Results of Data Processing With SPSS (2021)

 Based on the table above, the results of the instrument reliability test of the three variables, namely convenience, trustworthiness, and decision, show that all variable statement items are declared reliable, this is because the value is *Cronbach Alpha* > 0.6.
3. Normality Test With Kolmogorov Smirnov

Test can be said to be normal if the significance value is > 0.05.

Table 4.

Normality Test With Kolmogorov Smirnov The

<table>
<thead>
<tr>
<th>Normal Parameters a,b</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Absolute</th>
<th>Kolmogorov-Smirnov Z</th>
<th>Asymp. Sig. (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>.0000000</td>
<td>1.05185970</td>
<td>.086</td>
<td>.575</td>
<td>.896</td>
</tr>
<tr>
<td>Std. Deviation</td>
<td>1.05185970</td>
<td></td>
<td>.086</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute</td>
<td>.086</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>.086</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>-.084</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kolmogorov-Smirnov Z</td>
<td>.575</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asymp. Sig. (2-tailed)</td>
<td>.896</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Test distribution is Normal.
b. Calculated from data.

Table above shows that the significant level is 0.896 > 0.05, so it can be concluded that the variable is normal.

b. Multicollinearity

Test The multicollinearity test can be seen through the value of VIF < 10 and Tolerance > 0.1.

Table 5.

Normality Test With Multicollinearity

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
<td>Tolerance</td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>5.21</td>
<td>2.446</td>
<td>2.13</td>
<td>.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.520</td>
<td>.162</td>
<td>.433</td>
<td>.00</td>
</tr>
<tr>
<td></td>
<td>Kemudahan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Based on the table above shows that the tolerance value is 0.804 > 0.01 and the VIF value is 1.244 < 10 from the convenience and trust variables. So it can be concluded that all independent variables do not have a linear relationship.

c. Heteroscedasticity Test

![Scatter plot showing no heteroscedasticity]

In the picture above it can be seen that there is no heteroscedasticity. This is because the points spread out and form a certain pattern.

3. Multiple Linear Regression Test
Linear test, aims to test the effect of then and trust on purchasing decisions.

![Table 6. Multiple Linear Regression Analysis Test Results](chart.png)

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>(Constant)</td>
<td>5.217</td>
<td>2.446</td>
<td>2.133</td>
<td>.039</td>
</tr>
<tr>
<td>Kemudahan</td>
<td>.520</td>
<td>.162</td>
<td>.433</td>
<td>3.212</td>
</tr>
</tbody>
</table>

a. Dependent Variable: Keputusan Pembelian
Can be seen from the table above that:

a. The a value of 5.217 this value is a constant or state when the consumer purchasing decision variable has not been influenced by other variables, namely the convenience variable as (X1) and trust as (X2). If the independent variable does not exist, then the consumer purchasing decision variable does not change.

b. b1 (regression coefficient value X1) is 0.520, indicating that the convenience variable has a positive influence on purchasing decisions, which means that every increase in 1 convenience variable will affect purchasing decisions by 0.520, assuming that other variables are not examined in this study.

c. b2 (regression coefficient value X2) is 0.300, indicating that the trust variable has a positive influence on purchasing decisions, which means that every increase in 1 confidence variable will affect the purchasing decision by 0.300, assuming that other variables are not examined in this study.

4. T test (partially)

The t test used to determine the effect of each independent variable partially on the dependent variable.

![Table 7. Table](attachment:image.png)

a. Dependent Variable: Keputusan Pembelian

Based on 4.6 above, the t-test results (partial) show that the significance value:

1. Effect of convenience (X1) on purchasing decisions (Y) is 0.003 <0.05 and $t_{\text{value}} = 3.212 > t_{\text{table}} = 2.018$. Then H_01 is accepted and H_1 is rejected, meaning that there is a significant effect of convenience on purchasing decisions.

2. The effect of trust (X2) shows that the significance value of the influence of trust (X2) on purchasing decisions (Y) is 0.036 <0.05 and the t-value is $t_{\text{value}} = 2.166 > t_{\text{table}} = 2.018$. Then H_02 is accepted and H_2 is rejected, meaning that there is a significant influence of trust on purchasing decisions.

5. F test (simultaneously)
The f test (simultaneously) is used to determine whether the convenience and trust variables together have a significant influence on purchasing decisions.

Table 8.

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>30.518</td>
<td>2</td>
<td>15.259</td>
<td>13.165</td>
<td>.000<sup>a</sup></td>
</tr>
<tr>
<td>Residual</td>
<td>48.682</td>
<td>42</td>
<td>1.159</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>79.200</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Dependent Variable: Keputusan Pembelian
b. Predictors: (Constant), Kepercayaan, Kemudahan
\[df_1 = k - 1, \text{ and } df_2 = n - k \]
\[df_1 = 3 - 1 = 2 \text{ and } df_2 = 45 - 3 = 42 \]

Table above the significant values convenience (X1) and trust (X2) on purchasing decisions (Y) are 0.00 < 0.05 and $f_{\text{count}} 13.165 > f_{\text{table}} 3.22$. This proves that H_{a3} is accepted and H_{o3} is rejected, meaning that there is a significant effect of convenience (X1) and trust (X2) on purchasing decisions (Y).

6. Test Determinants (R2)
Analysis aims to determine the coefficient of determination sebarapa away the ability of independent variables (ease and trust) together in explaining the dependent variable (purchase decisions).

Table 9.

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.621<sup>a</sup></td>
<td>.385</td>
<td>.356</td>
<td>1.07661</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Kepercayaan, Kemudahan
Based on the table above, the coefficient value of R Square (R2) is 0.385 or 38.5%. So it can be concluded that the magnitude of the influence of the independent variable (X) on the dependent variable (Y) is 0.385 or 38.5%. While the rest is explained by other variables that are not in this study, namely price, promotion, and quality of information.

CONCLUSION
Based on the results of research on the effect of convenience and trust on online purchasing decisions on employees of the Binjai District Attorney, it can be concluded that ease has a significant effect on purchasing decisions. This is supported by The regression coefficient of convenience (X1) is 0.520. The t test which states $t_{\text{count}} (3.212) > t_{\text{table}} (2.018)$ means that the effect of convenience on purchasing decisions is significant. Trust has a significant effect on purchasing decisions. This is supported by The confidence regression coefficient (X2) is 0.300. The t test which states $t_{\text{count}} (2.166) > t_{\text{table}} (2.018)$ means that the effect of convenience on purchasing decisions is significant. Ease and trust together have a significant effect on purchasing decisions. This is supported by The coefficient of determination R^2 of 0.385 means the purchase decision variable variation can be explained by a variety of variables ease and confidence by 38.5% while the rest is explained by other variables outside the regression model, namely price, promotion, and the quality of information. The f test states that $f_{\text{count}} (13.165) > f_{\text{table}} (3.22)$ means that the effect of convenience and trust together on purchasing decisions is significant.
REFERENCES

Tanda Tangan Gaji Online (SITAGO).